

Rotary table cylinder——HRQ Series

Product series

Installation and application

- 1. Dirty substances in the pipe must be cleared away before cylinder is connected with pipeline to prevent the entrance of sundries into the cylinder.
- 2. The medium used by cylinder shall be filtered by the filter core of above 40 μ m.
- 3. Anti-freezing measure shall be adopted under low temperature environment to prevent moisture
- 4. If the cylinder is dismantled and stored for a long time, pay attention to conduct anti-rust treatment to the surf-ace. Anti-dust jam cap shall be added in air intake and outlet orifices.

Rotary table cylinder

HRQ Series

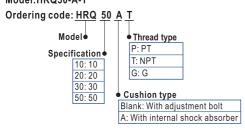
Product feature

- 1. Rack and pinion design, stable functioning.
- 2. Double cylinder structure, double output could be achieved.
- 3. The manufacturing precision of working platform is high, and is easy for installation, and is of precise orientation.
- 4. The center of working platform has a through hole, and pipe can be located and passed through this hole;
- 5. Two sides of cylinder have orientation holes, to facilitate installation.
- Two modes of buffer could be chosen, adjustment bolt buffer and internal shock absorber, the maximum buffer energy of internal shock absorber is 3-5 times that of adjustment bolt buffer.

Ordering code

Model can to be changed Ordering code. Example:

Production type: HRQ


Specification: 50

Buffer type: Internal shock absorber

Thread type: NPT

HRQ

Model:HRQ50-A-T

Actual forgue output

Specification

Specification		10	20	30	50		
Acting type	Acting type		Double rack and pinion(Double acting)				
Fluid		F	Air(to be filtered by	40 μ m filter elemei	nt)		
Operating	With adjustment bolt		0.1~1.0MPa(15~1	45psi)(1.0~10.0bai	^)		
pressure	With internal shock absorber		0.1~0.6MPa(15~	87psi)(1.0~6.0bar)			
Proof press	ure		1.5MPa(218	psi)(15.0bar)			
Temperature	e °C		0~	-60			
Angle adjus	Angle adjustment range		0~190°				
	With adjustment bolt	0.2°					
precision	With internal shock absorber		0.0	5°			
Theoretic m	oment (Nm)(0.5MPa)	1.1	2.2	2.75	5.15		
Cushion	With adjustment bolt	Rubber bumper					
type	With internal shock absorber		Shock ab		absorber		
End ports		1/8" ①					
Port size	Side ports	M5 × 0.8		M5 × 0.8			
Weight g		535	940	1260	2060		

¹ PT thread, NPT and G thread are available.

Add) QCK series are all attached with magnet, please refer to Page 403~426 for the specific content of sensor switch.

Maximum allowed movement energy and rotation times

Mandal	Maximal al	lowed energy (J)	Rotation times (s/90°)		
Model With adjustment bolt W		With internal shock absorber	With adjustment bolt	With internal shock absorber	
HRQ10	0.01	0.04	0.2~1.0	0.2~0.7	
HRQ20	0.025	0.12	0.2~1.0	0.2~0.7	
HRQ30	0.05	0.12	0.2~1.0	0.2~0.7	
HRQ50	0.08	0.30	0.2~1.0	0.2~0.7	

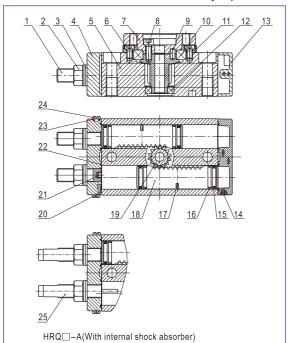
Note) ①: The movement energy should not exceed the allowed maximum energy, or the inner accessories of product would be damaged;

Explain of model

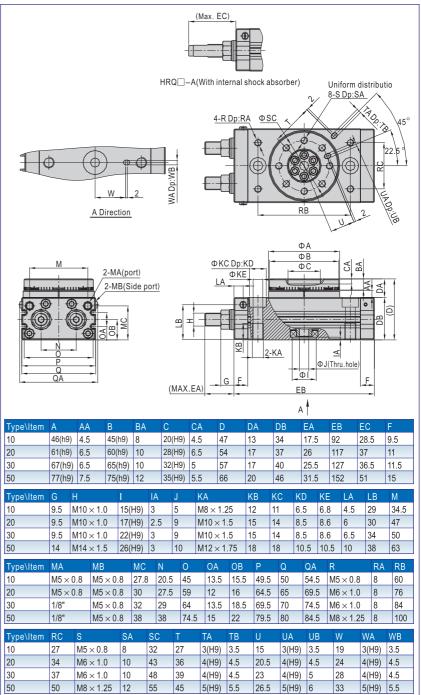
Note ①: When it is 10,20 specification, thread type is M5, it is blank here. Add) HRQ series are all atteched with magnet.

Maximum allowed loading

	Loading type	Model			
	Loading type	HRQ10	HRQ20	HRQ30	HRQ50
	Maximal allowed radial loading (N)	80	150	200	300
	Maximal allowed axial loading (N)	80	150	200	300
3	Maximal allowed bending moment (Nm)	2.5	4.0	5.5	10.0


AITTAC

^{2:} When the rotation times of with shock absorber is larger than the allowed tolerance, the bigger effect will be lost.


HRQ Series

Inner structure and material of major parts

NO.	Item	Material
1	Adjustment bole	Carbon steel
2	Hxcagon nut	Carbon steel
3	Seal washer	Carbon steel & Rubber
4	Front cover	Aluminum alloy
5	Body	Aluminum alloy
6	Hexagon socket head set bole	Carbon steel
7	Table	Aluminum alloy
8	Hexagon socket head set bole	Stainless steel
9	Parallel pin	Carbon steel
10	Deep-groove bearing	Subassembly
11	Bearing retainer	Aluminum alloy
12	Deep-groove bearing	Subassembly
13	Bacl cover	Aluminum alloy
14	Steel ball	Stainless steel
15	Piston O-ring	NBR
16	Wear ring	Wear resistant material
17	Magnet	Rare earths
18	Rack	Stainless steel
19	Pinion	Chrome molybdenum steel
20	O-ring	NBR
21	Bumper	NBR
22	O-ring	NBR
23	O-ring	NBR
24	Hexagon screw	Stainless steel
25	Shock absorber	Subassembly

Dimensions

HRQ

HRQ Series

How to select product

- 1. Determine the following working conditions according to the actual situation:
- 1.1) Rotation angle $\theta\colon The$ actual rotation angle must be within the maximum allowed range of rotation angle of cylinder.
- 1.2) Rotation time t: The rotation time must be within the maximum allowed range of rotation time of cylinder.
- 1.3) Installation position of cylinder: Allow enough installation space, so as to ensure leaving adequate space for rotation of cylinder and workpieces.
- 1.4) Determination of loading mass and loading shape.
- 2. Calculation of necessary forgue needed when loading rotation (T(N.m):

Calculate the necessary moment required for loading rotation according to the formula below, and combine with the forgue diagram of actual effect, to choose pneumatic cylinder with suitable forgue output.

T:Necessary forgue required for loading rotation (N.m)
K:Coefficient of allowance, K is defined as 5
I:Moment of inertia (kg.m²)
ώ:Angular acceleration (rad/s²)
θ :Rotation Angle (rad)
t:Rotation time (s)

2.1, Calculation method of moment of inertia in different conditions

(d)	d:Diameter (m) m:Mass (kg)	8	8	
	m.mass (kg)	Note: no special installation direction		
Classified disk	d ₁ :Diameter(m) d ₂ :Diameter(m) m ₁ :d ₁ Mass(kg) m ₂ :d ₂ Mass(kg)	. III.u. TIII.u.	$\frac{d_1^2 + d_2^2}{8}$ sregard d ₁ if d ₁	
Disk	d:Diameter (m) m:Mass (kg)	$I = \frac{md^2}{16}$ Note: no special installation	d² 16 direction	
Sphere	r:Radius(m) m:Mass(kg)	$I = \frac{2mr^2}{5}$ Note: no special installation	$\frac{2r^2}{5}$	
Thin-stick a ₁ a ₂	a ₁ :Length of stick(m) a ₂ :Length of stick(m) m ₁ :a ₁ Mass(kg) m ₂ :a ₂ Mass(kg)	$I = \frac{m_1 a_1^2 + m_2 a_2^2}{3}$ Note: 1. horizontal installation. 2. pay attention to the chang time when vertical instal		
Rectangle sheet	a,:Sheet length (m) a ₂ :Sheet length (m) b: Length of side(m) m ₁ :a, Mass(kg) m ₂ :a ₂ Mass(kg)	$I = \frac{m_1(4a_1^2+b^2)+m_2(4a_2^2+b^2)}{12}$ Note: 1. horizontal installation. 2. pay attention to the chang time when vertical instal	$\frac{2a_1^2 + 2a_2^2 + b^2}{6}$ e of movement	
Rectangle sheet a:Sheet length (m) b:Length of side(m) m:Mass(kg)		$I = \frac{m(a^2 + b^2)}{12}$ Note: no special installation	12 a ² +b ²	

Diagram	Description	Calculation formula of moment of mertia	TrotationTualao
Rectangle sheet	a:Sheet ength (m) m:Mass (kg)	$I = \frac{ma^2}{12}$	12
		Note: no special installation direc	tion
Rectangle sheet	a:Sheet ength (m) m:Mass(kg)	I = ma² 3 Note: 1. horizontal installation. 2. pay attention to the change of time when vertical installation.	
Rectangle sheet b	a:Sheet length (m) b:Distance between the rotation axis and the gravity center of loading (m)	$I = \frac{ma^2}{12} + mb^2$ Note: the cuboids are same too.	$\frac{a^2}{12} + b^2$
Concentrated load	m:Mass(kg) a,:Vertical distance between the	$I = m_1 a_1^2 + \frac{m_2 a_2^2}{3} + m_1 K$	
a ₂	rotation axis and the concentrated loading(m) a ₂ :Length of arm(m) m,:Mass of concentrated loading(kg) m ₂ :Mass of arm(kg)	Note: 1. horizontal installation. 2. compared with m, disregard if r	ape of w. For example,
Number of teeth a Number of teeth b	a:Tooth number of gear b:Tooth number of loading gear	$I_a = \left(-\frac{a}{b}\right)^2 I_b$	

 $Calculate \ the \ maximum \ movement \ energy \ E_{\tiny max} \ according \ to \ the \ formula \ below, \ and \ make \ sure \ that \ the$ $maximum\ movement\ energy\ is\ within\ allowed\ energy\ range\ of\ the\ chosen\ pneumatic\ cylinder,$ excessive large movement energy would lead to damage of inner parts, please choose rotation cylinder attached with shock absorber when the movement energy is fairly large.

$$E_{\text{\tiny max}} = \frac{1}{2} \; \text{I} \; \omega^{^2}_{\text{\tiny max}} \qquad \qquad \omega_{\text{\tiny max}} = \frac{2 \; \theta}{t} \qquad \qquad \omega_{\text{\tiny max}} \text{: Maximal angular velocity(rad/s)}$$

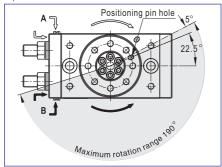
4. Calculation of loading rate

Calculate the loading rate according to the formula below, and the loading rate must not be more than 1.

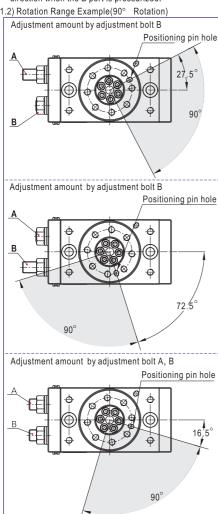
Loading rate=	W_s		W _r		≤1	
Loading rate=	Maximal allowed axial loading	<u> </u>	Maximal allowed radial loading	+	Maximal allowed bending moment of working platform	
W _s : Actual	axial loading	W,:	Actual radial loading		: Actual loaded bending moment of working platform	

5. Determination method

It could be used only when the chosen pneumatic cylinder must meet the requirements of article 2, 3 $\,$



AITTAC


HRQ Series

Installation and application

- 1. Rotation Direction and Rotation Angle
- 1.1) Rotation Direction

- A) By adjusting the adjustment bolt, the rotation end can be set within the range shown in the up drawing: Maximum ratation is 190°;
- B) The rotary table turns in the clockwise direction when the A port is pressurized, and in the counter-clockwise direction when the B port is pressurized.

1.3) The rotation angle can also be set on a type with internal absorber.

Model	Adjustment angle per rotation of angle (adjustment screw or shock absorber)
HRQ10	10.2°
HRQ20	6.5°
HRQ30	6.5°
HRQ50	8.2°

- 2. The range of rotation angle has been adjusted to the maximum in the factory, please do not enlarge the rotation angle any more.
- 3. The movement energy should not exceed the allowed maximum energy, or the inner parts will be damaged.
- 4. The rotary parts need no lubrication.
- 5. Series HRQ is equipped with a rubber bumper or shock absorber. Therefore, perform rotation adjustment in the pressurized condition(minimum operation pressure: 0.1 Mpa or more for adjustment bolt and internal shock absorber types, and 0.2 MPa or more for external shock
- 6. Refer to the table below for tightening torques of the shock absorber setting nut.

Shock absorber size		Max. tightening torque(Nm)
	M10	3.5
	M14	11.0

- $7. \ \mbox{Never loosen}$ the bottom screw of the shock absorber. (It is not an adjustment screw.) That may cause oil
- 8. Shock absorbers are consumable parts. When a decrease in energy absorption capacity is noticed, it must be

Rotary table cylinder	Shock absorber
HRQ10	ACA1006-A
HRQ20\HRQ30	ACA1007-A
HRQ50	ACA1412-A

Memo	Airta
Note	